The Milky Way's disk of stars is 'warped' and twisted, according to scientists who have built the first accurate 3D map of Earth's home galaxy.
Researchers from the Macquarie University in Australia and the Chinese Academy of Sciences have found for the first time that our solar system is anything but stable and flat.
Instead, it becomes increasingly 'warped' and twisted far away from the Milky Way's centre, according to the study published in the journal Nature Astronomy.
From a great distance, our galaxy would look like a thin disk of stars that orbit once every few hundred million years around its central region, where hundreds of billions of stars provide the gravitational 'glue' to hold it all together.
However, the pull of gravity becomes weaker far away from the Milky Way's inner regions. In the galaxy's far outer disk, the hydrogen atoms making up most of the Milky Way's gas disk are no longer confined to a thin plane, but they give the disk an S-like, warped appearance.
"It is notoriously difficult to determine distances from the sun to parts of the Milky Way's outer gas disk without having a clear idea of what that disk actually looks like," said Xiaodian Chen, a researcher at the Chinese Academy of Sciences in Beijing.
Researchers allowed the team to develop the first accurate 3D picture of our Milky Way out to its far outer regions.
Classical Cepheids are young stars that are some four to 20 times as massive as our Sun and up to 100,000 times as bright.
Such high stellar masses imply that they live fast and die young, burning through their nuclear fuel very quickly, sometimes in only a few million years.
They show day- to month-long pulsations, which are observed as changes in their brightness. Combined with a Cepheid's observed brightness, its pulsation period can be used to obtain a highly reliable distance.
"Somewhat to our surprise, we found that in 3D our collection of 1339 Cepheid stars and the Milky Way's gas disk follow each other closely. This offers new insights into the formation of our home galaxy," said Richard de Grijs, a professor at Macquarie University.
"Perhaps more important, in the Milky Way's outer regions, we found that the S-like stellar disk is warped in a progressively twisted spiral pattern," said De Grijs.
This reminded the team of earlier observations of a dozen other galaxies which also showed such progressively twisted spiral patterns.
Combining their new results with those other observations, the researchers concluded that the Milky Way's warped spiral pattern is most likely caused by 'torques' or rotational forcing by the massive inner disk.
"This new morphology provides a crucial updated map for studies of our galaxy's stellar motions and the origins of the Milky Way's disk," said Licai Deng, senior researcher at the Chinese Academy of Sciences.